Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 62: 10-19, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795614

RESUMO

As a biorefinery platform host, Escherichia coli has been used extensively to produce metabolites of commercial interest. Integration of foreign DNA onto the bacterial genome allows for stable expression overcoming the need for plasmid expression and its associated instability. Despite the development of numerous tools and genome editing technologies, the question of where to incorporate a synthetic pathway remains unanswered. To address this issue, we studied the genomic expression in E. coli and linked it not only to 26 rationally selected genomic locations, but also to the gene direction in relation to the DNA replication fork, to the carbon and nitrogen source, to DNA folding and supercoiling, and to metabolic burden. To enable these experiments, we have designed a fluorescent expression cassette to eliminate specific local effects on gene expression. Overall it can be concluded that although the expression range obtained by changing the genomic location of a pathway is small compared to the range typically seen in promoter-RBS libraries, the effect of culture medium, environmental stress and metabolic burden can be substantial. The characterization of multiple effects on genomic expression, and the associated libraries of well-characterized strains, will only stimulate and improve the creation of stable production hosts fit for industrial settings.


Assuntos
Escherichia coli , Edição de Genes , Escherichia coli/genética , Genoma Bacteriano/genética , Genômica , Plasmídeos
2.
Biotechnol Bioeng ; 116(2): 364-374, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30345503

RESUMO

Chromosomal integration of biosynthetic pathways for the biotechnological production of high-value chemicals is a necessity to develop industrial strains with a high long-term stability and a low production variability. However, the introduction of multiple transcription units into the microbial genome remains a difficult task. Despite recent advances, current methodologies are either laborious or efficiencies highly fluctuate depending on the length and the type of the construct. Here we present serine integrase recombinational engineering (SIRE), a novel methodology which combines the ease of recombinase-mediated cassette exchange (RMCE) with the selectivity of orthogonal att sites of the PhiC31 integrase. As a proof of concept, this toolbox is developed for Escherichia coli. Using SIRE we were able to introduce a 10.3 kb biosynthetic gene cluster on different locations throughout the genome with an efficiency of 100% for the integrating step and without the need for selection markers on the knock-in cassette. Next to integrating large fragments, the option for multitargeting, for deleting operons, as well as for performing in vivo assemblies further expand and proof the versatility of the SIRE toolbox for E. coli. Finally, the serine integrase PhiC31 was also applied in the yeast Saccharomyces cerevisiae as a marker recovery tool, indicating the potential and portability of this toolbox.


Assuntos
Escherichia coli/genética , Edição de Genes/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Vias Biossintéticas/genética , Instabilidade Genômica , Integrases/metabolismo , Mutagênese Insercional/métodos
3.
Microb Cell Fact ; 15: 23, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822953

RESUMO

BACKGROUND: Imbalance in cofactors causing the accumulation of intermediates in biosynthesis pathways is a frequently occurring problem in metabolic engineering when optimizing a production pathway in a microorganism. In our previous study, a single knock-out Citrobacter werkmanii ∆dhaD was constructed for improved 1,3-propanediol (PDO) production. Instead of an enhanced PDO concentration on this strain, the gene knock-out led to the accumulation of the toxic intermediate 3-hydroxypropionaldehyde (3-HPA). The hypothesis was emerged that the accumulation of this toxic intermediate, 3-HPA, is due to a cofactor imbalance, i.e. to the limited supply of reducing equivalents (NADH). Here, this bottleneck is alleviated by rationally engineering cell metabolism to balance the cofactor supply. RESULTS: By eliminating non-essential NADH consuming enzymes (such as lactate dehydrogenase coded by ldhA, and ethanol dehydrogenase coded by adhE) or by increasing NADH producing enzymes, the accumulation of 3-HPA is minimized. Combining the above modifications in C. werkmanii ∆dhaD resulted in the strain C. werkmanii ∆dhaD∆ldhA∆adhE::ChlFRT which provided the maximum theoretical yield of 1.00 ± 0.03 mol PDO/mol glycerol when grown on glucose/glycerol (0.33 molar ratio) on flask scale under anaerobic conditions. On bioreactor scale, the yield decreased to 0.73 ± 0.01 mol PDO/mol glycerol although no 3-HPA could be measured, which indicates the existence of a sink of glycerol by a putative glycerol dehydrogenase, channeling glycerol to the central metabolism. CONCLUSIONS: In this study, a multiple knock-out was created in Citrobacter species for the first time. As a result, the concentration of the toxic intermediate 3-HPA was reduced to below the detection limit and the maximal theoretical PDO yield on glycerol was reached.


Assuntos
Citrobacter/metabolismo , Gliceraldeído/análogos & derivados , Engenharia Metabólica/métodos , Propano/metabolismo , Propilenoglicóis/metabolismo , Sequência de Aminoácidos , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Citrobacter/efeitos dos fármacos , Citrobacter/enzimologia , Citrobacter/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucose/farmacologia , Gliceraldeído/metabolismo , Glicerol/farmacologia , Glicerol Quinase/metabolismo , Concentração de Íons de Hidrogênio , Metaboloma/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , NAD/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/efeitos dos fármacos , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
4.
Biotechnol Bioeng ; 112(8): 1594-603, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25728421

RESUMO

Glycosylation of small molecules can significantly alter their properties such as solubility, stability, and/or bioactivity, making glycosides attractive and highly demanded compounds. Consequently, many biotechnological glycosylation approaches have been developed, with enzymatic synthesis and whole-cell biocatalysis as the most prominent techniques. However, most processes still suffer from low yields, production rates and inefficient UDP-sugar formation. To this end, a novel metabolic engineering strategy is presented for the in vivo glucosylation of small molecules in Escherichia coli W. This strategy focuses on the introduction of an alternative sucrose metabolism using sucrose phosphorylase for the direct and efficient generation of glucose 1-phosphate as precursor for UDP-glucose formation and fructose, which serves as a carbon source for growth. By targeted gene deletions, a split metabolism is created whereby glucose 1-phosphate is rerouted from the glycolysis to product formation (i.e., glucosylation). Further, the production pathway was enhanced by increasing and preserving the intracellular UDP-glucose pool. Expression of a versatile glucosyltransferase from Vitis vinifera (VvGT2) enabled the strain to efficiently produce 14 glucose esters of various hydroxycinnamates and hydroxybenzoates with conversion yields up to 100%. To our knowledge, this fast growing (and simultaneously producing) E. coli mutant is the first versatile host described for the glucosylation of phenolic acids in a fermentative way using only sucrose as a cheap and sustainable carbon source.


Assuntos
Escherichia coli/metabolismo , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Engenharia Metabólica/métodos , Fenóis/metabolismo , Vitis/enzimologia , Metabolismo Energético , Escherichia coli/genética , Frutose/metabolismo , Deleção de Genes , Glucofosfatos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Uridina Difosfato Glucose/metabolismo , Vitis/genética
5.
Biotechnol Adv ; 33(2): 288-302, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25698505

RESUMO

Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.


Assuntos
Biotecnologia , Carboidratos/biossíntese , Glicosiltransferases/genética , Difosfato de Uridina/biossíntese , Sequência de Aminoácidos/genética , Catálise , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Humanos , Especificidade por Substrato , Difosfato de Uridina/química
6.
Microb Cell Fact ; 13: 70, 2014 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-24885849

RESUMO

BACKGROUND: 1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579. RESULTS: Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged. CONCLUSION: Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.


Assuntos
Citrobacter/genética , Citrobacter/metabolismo , Propilenoglicóis/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrobacter/efeitos dos fármacos , Citrobacter/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose/farmacologia , Glicerol/metabolismo , Glicerol/farmacologia , Concentração de Íons de Hidrogênio , Propilenoglicóis/química , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/metabolismo
7.
Metab Eng ; 23: 70-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594279

RESUMO

The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity.


Assuntos
DNA Bacteriano , Escherichia coli , Engenharia Metabólica/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética
8.
Appl Environ Microbiol ; 79(22): 7028-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014529

RESUMO

The GNB/LNB (galacto-N-biose/lacto-N-biose) pathway plays a crucial role in bifidobacteria during growth on human milk or mucin from epithelial cells. It is thought to be the major route for galactose utilization in Bifidobacterium longum as it is an energy-saving variant of the Leloir pathway. Both pathways are present in B. bifidum, and galactose 1-phosphate (gal1P) is considered to play a key role. Due to its toxic nature, gal1P is further converted into its activated UDP-sugar through the action of poorly characterized uridylyltransferases. In this study, three uridylyltransferases (galT1, galT2, and ugpA) from Bifidobacterium bifidum were cloned in an Escherichia coli mutant and screened for activity on the key intermediate gal1P. GalT1 and GalT2 showed UDP-glucose-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.12), whereas UgpA showed promiscuous UTP-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.10). The activity of UgpA toward glucose 1-phosphate was about 33-fold higher than that toward gal1P. GalT1, as part of the bifidobacterial Leloir pathway, was about 357-fold more active than GalT2, the functional analog in the GNB/LNB pathway. These results suggest that GalT1 plays a more significant role than previously thought and predominates when B. bifidum grows on lactose and human milk oligosaccharides. GalT2 activity is required only during growth on substrates with a GNB core such as mucin glycans.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Oligossacarídeos/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Deleção de Genes , Humanos , Leite Humano/química , Dados de Sequência Molecular , Família Multigênica , Plasmídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade por Substrato
9.
N Biotechnol ; 30(2): 255-61, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22115732

RESUMO

Escherichia coli strains are widely used as host for the production of recombinant proteins. Compared to E. coli K12, E. coli BL21 (DE3) has several biotechnological advantages, such as a lower acetate yield and a higher biomass yield, which have a beneficial effect on protein production. In a previous study (BMC Microbiol. 2011, 11:70) we have altered the metabolic fluxes of a K12 strain (i.e. E. coli MG1655) by deleting the regulators ArcA and IclR in such a way that the biomass yield is remarkably increased, while the acetate production is decreased to a similar value as for BL21 (DE3). In this study we show that the increased biomass yield beneficially influences recombinant protein production as a higher GFP yield was observed for the double knockout strain compared to its wild type. However, at higher cell densities (>2 g L(-1) CDW), the GFP concentration decreases again, due to the activity of proteases which obstructs the application of the strain in high cell density cultivations. By further deleting the genes lon and ompT, which encode for proteases, this degradation could be reduced. Consequently, higher GFP yields were observed in the quadruple knockout strain as opposed to the double knockout strain and the MG1655 wild type and its yield approximates the GFP yield of E. coli BL21 (DE3), that is, 27±5 mg g(CDW)(-1) vs. 30±5 mg g(CDW)(-1), respectively.


Assuntos
Escherichia coli K12/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/biossíntese , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Corpos de Inclusão/metabolismo , Peptídeo Hidrolases/metabolismo , Desnaturação Proteica , Renaturação Proteica , Proteólise , Fatores de Tempo
10.
Biotechnol Lett ; 34(2): 329-37, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22009573

RESUMO

Deletion of both iclR and arcA in E. coli profoundly alters the central metabolic fluxes and decreases acetate excretion by 70%. In this study we investigate the metabolic consequences of both deletions in E. coli BL21 (DE3). No significant differences in biomass yields, acetate yields, CO(2) yields and metabolic fluxes could be observed between the wild type strain E. coli BL21 (DE3) and the double-knockout strain E. coli BL21 (DE3) ΔarcAΔiclR. This proves that arcA and iclR are poorly active in the BL21 wild type strain. Noteworthy, both strains co-assimilate glucose and acetate at high glucose concentrations (10-15 g l(-1)), while this was never observed in K12 strains. This implies that catabolite repression is less intense in BL21 strains compared to in E. coli K12.


Assuntos
Escherichia coli K12/fisiologia , Deleção de Genes , Proteínas Repressoras/deficiência , Acetatos/metabolismo , Proteínas da Membrana Bacteriana Externa , Biomassa , Dióxido de Carbono/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli , Glucose/metabolismo
11.
BMC Microbiol ; 11: 70, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21481254

RESUMO

BACKGROUND: Gene expression is regulated through a complex interplay of different transcription factors (TFs) which can enhance or inhibit gene transcription. ArcA is a global regulator that regulates genes involved in different metabolic pathways, while IclR as a local regulator, controls the transcription of the glyoxylate pathway genes of the aceBAK operon. This study investigates the physiological and metabolic consequences of arcA and iclR deletions on E. coli K12 MG1655 under glucose abundant and limiting conditions and compares the results with the metabolic characteristics of E. coli BL21 (DE3). RESULTS: The deletion of arcA and iclR results in an increase in the biomass yield both under glucose abundant and limiting conditions, approaching the maximum theoretical yield of 0.65 c-mole/c-mole glucose under glucose abundant conditions. This can be explained by the lower flux through several CO2 producing pathways in the E. coli K12 ΔarcAΔiclR double knockout strain. Due to iclR gene deletion, the glyoxylate pathway is activated resulting in a redirection of 30% of the isocitrate molecules directly to succinate and malate without CO2 production. Furthermore, a higher flux at the entrance of the TCA was noticed due to arcA gene deletion, resulting in a reduced production of acetate and less carbon loss. Under glucose limiting conditions the flux through the glyoxylate pathway is further increased in the ΔiclR knockout strain, but this effect was not observed in the double knockout strain. Also a striking correlation between the glyoxylate flux data and the isocitrate lyase activity was observed for almost all strains and under both growth conditions, illustrating the transcriptional control of this pathway. Finally, similar central metabolic fluxes were observed in E. coli K12 ΔarcA ΔiclR compared to the industrially relevant E. coli BL21 (DE3), especially with respect to the pentose pathway, the glyoxylate pathway, and the TCA fluxes. In addition, a comparison of the genome sequences of the two strains showed that BL21 possesses two mutations in the promoter region of iclR and rare codons are present in arcA implying a lower tRNA acceptance. Both phenomena presumably result in a reduced ArcA and IclR synthesis in BL21, which contributes to the similar physiology as observed in E. coli K12 ΔarcAΔiclR. CONCLUSIONS: The deletion of arcA results in a decrease of repression on transcription of TCA cycle genes under glucose abundant conditions, without significantly affecting the glyoxylate pathway activity. IclR clearly represses transcription of glyoxylate pathway genes under glucose abundance, a condition in which Crp activation is absent. Under glucose limitation, Crp is responsible for the high glyoxylate flux, but IclR still represses transcription. Finally, in E. coli BL21 (DE3), ArcA and IclR are poorly expressed, explaining the similar fluxes observed compared to the ΔarcAΔiclR strain.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biomassa , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Proteínas Repressoras/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-20827435

RESUMO

The main requirement for metabolic flux analysis (MFA) is that the cells are in a pseudo-steady state, that there is no accumulation or depletion of intracellular metabolites. In the past, the applications of MFA were limited to the analysis of continuous cultures. This contribution introduces the concept of dynamic MFA and extends MFA so that it is applicable to transient cultures. Time series of concentration measurements are transformed into flux values. This transformation involves differentiation, which typically increases the noisiness of the data. Therefore, a noise-reducing step is needed. In this work, polynomial smoothing was used. As a test case, dynamic MFA is applied on Escherichia coli cultivations shifting from carbon limitation to nitrogen limitation and vice versa. After switching the limiting substrate from N to C, a lag phase was observed accompanied with an increase in maintenance energy requirement. This lag phase did not occur in the C- to N-limitation case.


Assuntos
Carbono/farmacologia , Técnicas de Cultura de Células/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Nitrogênio/farmacologia , Trifosfato de Adenosina/metabolismo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Hidrólise/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo
13.
J Biosci Bioeng ; 110(6): 646-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20696615

RESUMO

In this study we validated the use of 24 square deepwell microtiterplates to screen large libraries of metabolically engineered strains by investigating the optimization of succinate production. Wild type E. coli MG1655 and 11 derived mutants were physiologically evaluated by growth in 24 deepwell MTPs and 2L benchtop bioreactors. Growth parameters, product yields and byproduct formation were determined for all mutants. The results show that similar average values and standard deviations for these parameters were obtained. Especially a high correlation was noticed for the acetate byproduct yield and the succinate production rate. For these parameters there was no significant difference for 8 out of 12 strains between MTPs and 2L bioreactors. However a lower maximum growth rate was observed in 2L reactors as opposed to 24 deepwell plates for 9 out of 12 mutants which could be linked to the higher amount of dead cells in the benchtop bioreactors (12% vs. 2% in MTPs). Finally, a cluster-based approach was used to select good producer strains, i.e. strains with a high succinate yield and succinate production rate. Bad, intermediate and good producer strains were clustered in the same groups for MTPs and benchtop bioreactors for 11 out of the 12 investigated strains.


Assuntos
Escherichia coli/metabolismo , Engenharia Genética , Ácido Succínico/metabolismo , Acetatos/metabolismo , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Miniaturização
14.
J Ind Microbiol Biotechnol ; 37(8): 793-803, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20440535

RESUMO

Escherichia coli is one of the most widely used hosts for the production of recombinant proteins, among other reasons because its genetics are far better characterized than those of any other microorganism. To improve the understanding of recombinant protein synthesis in E. coli, the production of a model recombinant protein, beta-galactosidase, was studied in response to the constitutive overexpression of the anaplerotic reaction afforded by PEP carboxylase. To this end, an IPTG wash-in experiment was performed starting from a well-defined steady-state condition for both the wild-type E. coli and a mutant with a defective acetate pathway and a constitutively overexpressed ppc. In order to compare the dynamics of the fluxes over time during the wash-in experiment, a method referred to as transient metabolic flux analysis, which is based on steady-state metabolic flux analysis, was used. This allowed us to track the intracellular changes/fluxes in both strains. It was observed that the flux towards fermentation products was 3.6 times lower in the ppc overexpression mutant compared to the wild-type E. coli. In the former on the other hand, the PPC flux is in general higher. In addition, the flux towards beta-galactosidase was higher (12.4 times), resulting in five times more protein activity. These results indicate that by constitutively overexpressing the anaplerotic ppc gene in E. coli, the TCA cycle intermediates are increasingly replenished. The additional supply of these protein precursors has a positive result on recombinant protein production.


Assuntos
Acetato Quinase/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Deleção de Genes , Fosfoenolpiruvato Carboxilase/biossíntese , Piruvato Oxidase/genética , beta-Galactosidase/metabolismo , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Fosfoenolpiruvato Carboxilase/genética , Proteínas Recombinantes/metabolismo
15.
Biotechnol Prog ; 23(5): 1053-63, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17715942

RESUMO

E. coli cells produce acetate as an extracellular coproduct of aerobic cultures. Acetate is undesirable because it retards growth and inhibits protein formation. Most process designs or genetic modifications to minimize acetate formation aim at balancing growth rate and oxygen consumption. In this research, three genetic approaches to reduce acetate formation were investigated: (1) direct reduction of the carbon flow to acetate (ackA-pta, poxB knock-out); (2) anticipation on the underlying metabolic and regulatory mechanisms that lead to acetate (constitutive ppc expression mutant); and (3) both (1) and (2). Initially, these mutants were compared to the wild-type E. coli via batch cultures under aerobic conditions. Subsequently, these mutants were further characterized using metabolic flux analysis on continuous cultures. It is concluded that a combination of directly reducing the carbon flow to acetate and anticipating on the underlying metabolic and regulatory mechanism that lead to acetate, is the most promising approach to overcome acetate formation and improve recombinant protein production. These genetic modifications have no significant influence on the metabolism when growing the micro-organisms under steady state at relatively low dilution rates (less than 0.4 h(-1)).


Assuntos
Acetatos/metabolismo , Carbono/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Modelos Biológicos , Simulação por Computador , Melhoramento Genético/métodos , Mutação
16.
Appl Microbiol Biotechnol ; 76(5): 1051-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17619876

RESUMO

L-Arabinose isomerase (E.C. 5.3.1.14) catalyzes the reversible isomerization between L-arabinose and L-ribulose and is highly selective towards L-arabinose. By using a directed evolution approach, enzyme variants with altered substrate specificity were created and screened in this research. More specifically, the screening was directed towards the identification of isomerase mutants with L-ribose isomerizing activity. Random mutagenesis was performed on the Escherichia coli L-arabinose isomerase gene (araA) by error-prone polymerase chain reaction to construct a mutant library. To enable screening of this library, a selection host was first constructed in which the mutant genes were transformed. In this selection host, the genes encoding for L-ribulokinase and L-ribulose-5-phosphate-4-epimerase were brought to constitutive expression and the gene encoding for the native L-arabinose isomerase was knocked out. L-Ribulokinase and L-ribulose-5-phosphate-4-epimerase are necessary to ensure the channeling of the formed product, L-ribulose, to the pentose phosphate pathway. Hence, the mutant clones could be screened on a minimal medium with L-ribose as the sole carbon source. Through the screening, two first-generation mutants were isolated, which expressed a small amount of L-ribose isomerase activity.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Mutação , Aldose-Cetose Isomerases/genética , Arabinose/metabolismo , Biotecnologia/métodos , Clonagem Molecular , Meios de Cultura , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Isomerismo , Seleção Genética
17.
J Chromatogr A ; 1101(1-2): 115-21, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16253266

RESUMO

A new high performance liquid chromatographic (HPLC) method is described for the analysis of ribose, arabinose and ribulose mixtures obtained from (bio)chemical isomerization processes. These processes gain importance since the molecules can be used for the synthesis of antiviral therapeutics. The HPLC method uses boric acid as a mobile phase additive to enhance the separation on an Aminex HPX-87K column. By complexing with boric acid, the carbohydrates become negatively charged, thus elute faster from the column by means of ion exlusion and are separated because the complexation capacity with boric acid differs from one carbohydrate to another. Excellent separation between ribose, ribulose and arabinose was achieved with concentrations between 0.1 and 10 gL(-1) of discrete sugar.


Assuntos
Arabinose/isolamento & purificação , Ácidos Bóricos/química , Cromatografia Líquida de Alta Pressão/métodos , Pentoses/isolamento & purificação , Ribose/isolamento & purificação , Aldose-Cetose Isomerases/metabolismo , Arabinose/metabolismo , Cromatografia Líquida de Alta Pressão/instrumentação , Pentoses/metabolismo , Reprodutibilidade dos Testes , Estereoisomerismo
18.
Biotechnol Lett ; 27(5): 305-11, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15834790

RESUMO

Gluconobacter oxydans LMG 1489 was selected as the best strain for NAD(P)-dependent polyol dehydrogenase production. The highest enzyme activities were obtained when this strain was cultivated on a medium consisting of 30 g glycerol l(-1), 7.2 g peptone l(-1) and 1.8 g yeast extract l(-1). Two D-fructose reducing, NAD-dependent intracellular enzymes were present in the G. oxydans cell-free extract: sorbitol dehydrogenase, and mannitol dehydrogenase. Substrate reduction occurred optimally at a low pH (pH 6), while the optimum for substrate oxidation was situated at alkaline pHs (pH 9.5-10.5). The mannitol dehydrogenase was more thermostable than the sorbitol dehydrogenase. The cell-free extract could be used to produce D-mannitol and D-sorbitol enzymatically from D-fructose. Efficient coenzyme regeneration was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.


Assuntos
Gluconobacter oxydans/enzimologia , L-Iditol 2-Desidrogenase/metabolismo , NAD/metabolismo , Biotecnologia , Carbono , Dióxido de Carbono/química , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Meios de Cultura/metabolismo , Ácido Edético/farmacologia , Fermentação , Frutose/química , Frutose/farmacologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Íons , Manitol/química , Oxigênio/metabolismo , Sorbitol/química , Sorbitol/farmacologia , Especificidade da Espécie , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...